Exercise Therapy as Therapeutic Option For Muscle Atrophy: Study on Signaling IGF-1 in Skeletal Muscle
Keywords:
exercise therapy, IGF1, muscle wasting, metabolic system disorderAbstract
Background - Muscle wasting is caused by metabolic system disorders involving disorders of the musculoskeletal system, one of the risks is insulin growth factor (IGF1) damage. Exercise therapy is one of the physiotherapy interventions that can increase muscle mass and strength, reduce oxidative stress related to aging, chronic inflammation, increase autophagy, and improve mitochondrial function. Methods - The method used in this paper is a literature review using a search database of Google Scholar, Pubmed, and Researchgate with the topic search keywords "muscle wasting", "Biomarker and Molecular IGF1", and "exercise" which are used to expand or specify the search so that it can make it easier in determining the research articles or journals used. literature review selection using inclusion and exclusion categories and taking into account the interrelationships between keywords. Results - Exercise therapy is able to increase muscle mass and act as an alternative therapy in cases of metabolic disorders that cause muscle wasting. Exercise therapy that can be used to increase muscle mass is resistance training and controlled exercise programs. Conclusion - Exercise therapy is able to increase signaling activation of insulin growth factor (IGF1) which causes an increase in insulin sensitivity to improve the downregulation process of muscle wasting in patients with metabolic system disorders.
Downloads
References
Ahmad, S.S., Ahmad, K., Lee, E.J., Lee, Y.H., Choi, I., 2020. Implications of Insulin-Like Growth Factor-1 in Skeletal Muscle and Various Diseases. Cells 9: 1–15. doi:10.3390/cells9081773
Angulo, J., El Assar, M., Álvarez-Bustos, A., Rodríguez-Mañas, L., 2020. Physical activity and exercise: Strategies to manage frailty. Redox Biol. 35: 101513. doi:10.1016/j.redox.2020.101513
Barclay, R.D., Burd, N.A., Tyler, C., Tillin, N.A., Mackenzie, R.W., 2019. The Role of the IGF-1 Signaling Cascade in Muscle Protein Synthesis and Anabolic Resistance in Aging Skeletal Muscle. Front. Nutr. 6: 1–9. doi:10.3389/fnut.2019.00146
Constantin-Teodosiu, D Constantin, D., 2021. Molecular Mechanisms of Muscle Fatigue. Int. J. Mol. Sci. 22: 11587.
Dirks, M.L., Wall, B.T., Van De Valk, B., Holloway, T.M., Holloway, G.P., Chabowski, A., Goossens, G.H., Van Loon, L.J., 2016. One week of bed rest leads to substantial muscle atrophy and induces whole-body insulin resistance in the absence of skeletal muscle lipid accumulation. Diabetes 65: 2862–2875. doi:10.2337/db15-1661
Graham, Z.A., Lavin, K.M., O’Bryan, S.M., Thalacker-Mercer, A.E., Buford, T.W., Ford, K.M., Broderick, T.J., Bamman, M.M., 2021. Mechanisms of exercise as a preventative measure to muscle wasting. Am. J. Physiol. - Cell Physiol. 321: C40–C57. doi:10.1152/ajpcell.00056.2021
Kalmykova, Y., Kalmykov, S., Bismak, H., Beziazychna, O., Okun, D., 2021. Results of the use of physical therapy for metabolic syndrome according to anthropometric studies. J. Hum. Sport Exerc. 16: 333–347. doi:10.14198/jhse.2021.162.09
Kim, G., Kim, J.H., 2020. Namgok Lecture 2019: Impact of Skeletal Muscle Mass on Metabolic Health. Endocrinol. Metab. 35: 1–6.
Koopman, R., Ly, C.H., Ryall, J.G., 2014. A metabolic link to skeletal muscle wasting and regeneration. Front. Physiol. 5 FEB: 1–11. doi:10.3389/fphys.2014.00032
Martín, A.I., Priego, T., Moreno-Ruperez, Á., González-Hedström, D., Granado, M., López-Calderón, A., 2021. IGF-1 and IGFBP-3 in inflammatory cachexia. Int. J. Mol. Sci. 22. doi:10.3390/ijms22179469
Montesi, L., Moscatiello, S., Malavolti, M., Marzocchi, R., Marchesini, G., 2013. Physical activity for the prevention and treatment of metabolic disorders. Intern. Emerg. Med. 8: 655–666. doi:10.1007/s11739-013-0953-7
Nakanishi, N., Takashima, T., Oto, J., 2020. Muscle atrophy in critically ill patients: A review of its cause, evaluation, and prevention. J. Med. Investig. 67: 1–10. doi:10.2152/jmi.67.1
Renzini, A., Riera, C.S., Minic, I., D’ercole, C., Lozanoska‐ochser, B., Cedola, A., Gigli, G., Moresi, V., Madaro, L., 2021. Metabolic remodeling in skeletal muscle atrophy as a therapeutic target. Metabolites 11. doi:10.3390/metabo11080517
Rubio-Ruiz, M.E., Guarner-Lans, V., Pérez-Torres, I., Soto, M.E., 2019. Mechanisms underlying metabolic syndrome-related sarcopenia and possible therapeutic measures. Int. J. Mol. Sci. 20. doi:10.3390/ijms20030647
Scicchitano, B.M., Dobrowolny, G., Sica, G., Musaro, A., 2018. Molecular Insights into Muscle Homeostasis, Atrophy and Wasting. Curr. Genomics 19: 356–369. doi:10.2174/1389202919666180101153911
Timmer, L.T., Hoogaars, W.M.H., Jaspers, R.T., 2018. The role of IGF-1 signaling in skeletal muscle atrophy. Adv. Exp. Med. Biol. 1088: 109–137. doi:10.1007/978-981-13-1435-3_6
Van Gassel, R.J.J., Baggerman, M.R., Van De Poll, M.C.G., 2020. Metabolic aspects of muscle wasting during critical illness. Curr. Opin. Clin. Nutr. Metab. Care 23: 96–101. doi:10.1097/MCO.0000000000000628
Wollersheim, T., Grunow, J.J., Carbon, N.M., Haas, K., Malleike, J., Ramme, S.F., Schneider, J., Spies, C.D., Märdian, S., Mai, K., Spuler, S., Fielitz, J., Weber-Carstens, S., 2019. Muscle wasting and function after muscle activation and early protocol-based physiotherapy: an explorative trial. J. Cachexia. Sarcopenia Muscle 10: 734–747. doi:10.1002/jcsm.12428
Yoshida, T., Delafontaine, P., 2020. Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells 9: 1–25. doi:10.3390/cells9091970
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Muhammad Yusrin Al Gifari, N Nafiah, R Rahmani

This work is licensed under a Creative Commons Attribution 4.0 International License.